Year 11 Higher| |Term 1 | Knowledge Organiser

Transformations

Transformations		
1	Enlarge	To make a shape bigger or smaller by a given scale factor
2	Scale factor	The multiple describing how much a shape has been enlarged
3	Line of symmetry	A line that passes through the centre of a shape with a mirror image on either side
4	Reflect	Mapping of one object from one position to another of equal distance from a given line
5	Rotate	Movement around a fixed point by a certain number of degrees
6	Translation	When an object is moved from one place to another by a given vector
7	Invariant	A point that does not move after a transformation
8	Horizontal	A straight line parallel with the x-axis
9	Vertical	A straight line parallel with the y-axis

Bearings

1	Cardinal directions	North, South, East, West
2	Bearing	The angle in degrees measured clockwise from North
$\mathbf{3}$	Clockwise	Moving in the direction of the hands of a clock
$\mathbf{4}$	Protractor	An instrument used for measuring or drawing angles
$\mathbf{5}$	Construct	To draw accurately using a compass, protractor and ruler
$\mathbf{6}$	Scale	The ratio of the length of a drawing to the length of the real thing
		Circle Theorems

Angle in a

 semicircle is 90°

Angle between radius and tangent is 90°

Opposite angles in a cyclic quadrilateral add to 180°

Angles in the same segment are equal

Alternate segment theorem

Volume \& Surface Area

1 Volume
The amount of size within a 3D shape

2 Volume

Units -

$\mathrm{m}^{3}, \mathrm{~cm}^{3}, \mathrm{~mm}^{3}$ etc
The total areas of
3 Surface Area each face of a 3D shape
A 3D shape that has
the same crosssection all the way along it
length \times width \times height
area of cross

- section
\times length

8 Volume of a

$$
\pi r^{2} h
$$

cone

$$
\frac{1}{3} \pi r^{2} h
$$

9 Volume of a pyramid
$\frac{1}{3} \times$ area of base
\times height

Volume of a sphere

$\frac{4}{3} \pi r^{3}$

