Algebraic Manipulation and Proof		
1	Binomial	A polynomial with two terms
2	Quadratic	A polynomial with a squared term
3	Expand	Multiply out brackets
4	Factorise	Put brackets back in by finding common factors
5	Changing the subject	Rearranging a formula, using balancing, to make another variable the subject
6	Proof	Logical mathematical arguments used to show the truth of a statement
7	Verify	The process of making sure a solution is correct
8	Even number	Of the form 2 n
9	Odd number	Of the form $2 n+1$
10	Consecutive numbers	Written in the form n, $\mathrm{n}+1, \mathrm{n}+2$
10	Sum	Add
11	Product	Multiply
12	Difference	Subtract

Gradients and Rates of Change

1	$\mathrm{Y}=\mathrm{mx}+\mathrm{c}$	M is the gradient, c is the y intercept					
$\mathbf{2}$	Gradient formula	Gradient $=\frac{\mathrm{Y}_{2}-\mathrm{Y}_{1}}{\mathrm{X}_{2}-\mathrm{X}_{1}}$	$	$	$\mathbf{3}$	Parallel lines	Have the same gradient
:---	:---	:---					
$\mathbf{4}$	Perpendicular lines	Gradients multiply to give -1					
$\mathbf{5}$	Distance time graph	Plots the distance an object travels against the time it takes it to travel					
$\mathbf{6}$	Speed	Distance \div time					
$\mathbf{7}$	Velocity time graph	Plots the velocity of an object against the time it takes it to travel					
8	Velocity	Rate of travel of an object, along with its direction					
9	Acceleration	Gradient of a velocity time graph or change in velocity \div change in time					
10	Distance travelled	Area under the curve of a velocity time graph					

Iteration and Functions		
1	Iteration	Doing the same thing over and over again
2	Change of sign method	Make the equation equal zero and then substitute both values in. Show that there is a change in sign.
3	Recurrenc e relation	A sequence where each term is calculated from the previous term
4	Evaluate	Substitute the value into the expression for $f(x)$
5	Solve	Put $f(x)$ equal to the value and solve the equation
6	Domain	All the values of x to which the function is applied
7	Range	All values of $f(x)$
8	Composite function	Combining two functions to make $\mathrm{fg}(\mathrm{x})$
9	$\mathrm{Fg}(\mathrm{x})$	Means $f(g(x))$ I.e. apply g first followed by f
10	$\mathrm{F}^{-1}(\mathrm{x})$	The inverse function
Loci and Construction		
1	Locus	Set of points with a common property
2	Equidistant	The same distance
3	Bisector	A line that divides something into two equal parts
4	Arc	Part of a curve
5	Perpendicular	Lines that meet at 90 degrees

