Index Laws			Brackets			Equations and Formulae		
1	Square number	The number you get when you multiply a number by itself	1	Expand a single brack et	Multiply what is one the outside of the brackets by everything on the inside	1	Variable Coefficient	A letter in an algebraic expression
2	Square root	The number you multiply by itself to get another number	2	Expand and simplify	Expand each bracket and then collect like terms	2		variable you have A mathematical
3	Cube number	The number you get when you multiply a number by itself and itself again	3	Expand double brackets	Each term in the first bracket is multiplied by all the terms in the second bracket	3		statement written using symbols, numbers or letters; no equal sign
4	Cube root	The number you multiply by itself and itself again to get another number	4 5	Quadratic Factorise an	Has an x^{2} term in it Divide an expression by its	4	Collecting like terms	Adding and subtracting terms if they have the same
5	Powers of	The powers of a number are that number raised to various powers	6	D.O.T.S.	and put it into brackets Difference of two squares $A a^{2}-b^{2}=(a+b)(a-b)$	5	Formula	letter Shows the relationship between two or more variables
6	Multiplication index law	When multiplying the same base, add the powers	7	Factorise a quadratic	Put into two brackets	6	Substitution	Replace letters with numbers
7	Division index law	When dividing with the same base, subtract the powers	Inequalities			7	Writing formulae	Substitute words for letters in the question
8	Brackets index laws	When raising a power to another power, multiply the powers together	1	Inequality Open circles	Two values are not equal Are used for numbers that are less than or greater	8	Solve	Find the answer of something
9	Negative powers	Performs the reciprocal	3	Closed	than Are used for numbers that	10	Rearranging	Use inverse operations
10	Fractional powers	The denominator of the fractional power acts as the root. The numerator of a fractional power acts as a normal power	4	$\begin{aligned} & x>2 \\ & x<2 \end{aligned}$	greater than or equal Means x is greater than 2 Means x is less than 2			formula until you find the expression for the letter

Sequences

$\mathbf{1}$	Sequence	A set of numbers that follows a pattern
$\mathbf{2}$	Term	Each value in a sequence is called a term
$\mathbf{3}$	Position	The place in the sequence
$\mathbf{4}$	Term-to- term rule	The rule to get from one term to the next
$\mathbf{5}$	Nth term	The rule to work out any term from its position
$\mathbf{6}$	Linear sequence	A number pattern with a common difference
$\mathbf{7}$	Fibonacci sequence	A sequence where the next number is found by adding up the previous two terms
8	Geometric sequence	A sequence when the term-to-term rule is multiply or divide
9	Quadratic sequence	A sequence that involves square numbers
10	Triangular numbers	The sequence which comes from a pattern of dots that form a triangle $1,3,6,10$
		lo

	Distance-time graphs	
1	Time	On the x axis
2	Distance	On the y axis
3	Speed	Distance \div time
4	Speed	Gradient of the line
5	Straight line	Travelling at a constant speed
6	Horizontal line	Object is stationary
7	Positive gradient	Object is moving away from the start point
8	Negative gradient	Object is moving towards the start point
9	Steeper gradient	Moving faster
10	Average speed	Total distance \div total speed
Non-linear graphs		

Straight line graphs

1	Midpoint of a line	Add the x coordinates and divide by 2 , add the y coordinates and divide by 2
2	Axes	A fixed reference line on a grid to help show the position of coordinates
3	Linear graph	Straight line graph
4	$Y=m x+c$	M is the gradient C is the y-intercept
5	Gradient	How steep the line is
6	Gradient	$m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
7	Parallel lines	Have the same gradient
8	Perpendicular lines	The product of the gradients will always equal -1
9	Perpendicular lines	The gradient of perpendicular lines is the negative reciprocal
10	Reciprocal	Found by doing 1 divided by the number

